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Aggregation of colloidal particles with a finite attraction energy was investigated 
with computer simulations and with gold particles coated with a surfactant. 
Computer simulations were carried out with the Shih-Aksay-Kikuchi (SAK) 
model, which incorporates a finite nearest-neighbor attraction energy - E  into 
the diffusion-limited-cluster-aggregation (DLCA) model. Both the computer 
simulations and the experiments showed that (i) with a finite interparticle 
attraction energy, aggregates can still remain fractal, and (ii) the fractal dimension 
remains unchanged at large interparticle attraction energies and increases when 
the interparticle attraction energy is smaller than 4k~ T, where Tis the tcmperalurc 
and k.  is the B~)ltzmann constant. The agrcemcnl between the simulations and the 
experimental results suggests that the reversiblc aggregation process in a colloidal 
system can be represented by the SAK model. 
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1. I N T R O D U C T I O N  

Col lo ida l  aggregates  have a t t rac ted  much research interest  since it was 
shown that  the concept  of a fractal d imens ion  D can be used to charac-  
terize the s t ructure  of a d i sordered  system, such as a r andom aggregate  that  
is formed under  nonequi l ib r ium cond i t ionsJ  l) However ,  under  most  

c i rcumstances,  only  certain values of the fractal d imension  have been found 
with small  gold,  silica, and polys tyrene  part icles (size ~<0.1/ira): D = 1.75 
for fast aggrega t ion  t2 4) and  D = 2.02-2.12 for slow aggrega t ion /5  7~ Occa-  

sionally,  the D = 1.75 aggregates  may  at a la ter  t ime res t ructure  to higher  
fractal  d imensions,  D = 2 . 0 8 - 2 . 1  (ref. 3) and  D = 2 . 4  (ref. 4). C o m p u t e r  
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simulations of the diffusion-limited-cluster-aggregation model (DLCA) ~s'9~ 
yield D = 1.78 in three dimensions (3D) and seem to represent fast aggrega- 
tion in the colloidal systems. The reaction-limited-cluster-aggregation 
model (RLCA) ~j~ is a modification of the DLCA model with a sticking 
probability p. Computer simulations of the RLCA model with p approaching 
zero, which yield D = 2.0 in three dimensions, seem to be coincident with 
the result of slow aggregation; however, the RLCA model cannot account 
for the restructuring of the aggregates. Both the DLCA and RLCA are 
irreversible aggregation models. 

In order to simulate the reversible aggregation process of colloidal 
particles, modifications to the DLCA model have been considered, since 
the DLCA model seems to represent colloidal aggregation under irrevers- 
ible conditions. Kolb ~l~ has modified the DLCA model with random bond 
breaking, which yields D= 1.57___0.06 in two dimensions (2D) and 
D = 2.03 ___ 0.05 in 3D at dynamic equilibrium. Although the Kolb model Ij~ 
seems to be able to explain the restructuring of silica aggregates, 13J it can- 
not explain the fractal dimension D = 2.4 obtained for gold aggregates ~4j at 
a later time. 

Meanwhile, various fractal dimensions have been observed experimen- 
tally with larger polystyrene particles in 2D (size > 1 p,m}. ~12j Skjeltorp has 
shown that aggregates form with D = 1.7--2.0 in fairly concentrated suspen- 
sions as a result of changing the particle concentration and/or the salt con- 
centration. Skjeitorp's minimum fractal dimension D = 1.7 in 2D is more 
consistent with the computer simulations of the diffusion-limited-aggrega- 
tion model (DLA)J ~) While Skjeltorp has been able to obtain a band of 
values for D and to correlate the fractal dimension with the growth rate of 
the aggregates, he has not addressed the correlation of the change in the 
fractal dimension with either the particle concentration or the salt concen- 
tration, both of which can change the interparticle interaction in colloidal 
systems.(~3) 

In this paper, we will review the investigations concerning the effect 
of the interparticle interaction, especially a finite interparticle attraction 
energy, on the aggregation of colloidal particles both experimentally and 
with computer simulations. The computer simulations were done by Shih, 
Aksay, and Kikuchi (SAK) ~14) by modifying the DLCA model with a finite 
interparticle attraction energy - E .  Although the Kolb model and the SAK 
model are both reversible aggregation models, the bond-breaking processes 
are very different in the two models. In the Kolb model, the breaking unit 
is a bond which breaks randomly and independently with a probability 1/z 
per unit time, whereas in the SAK model, bond breaking is not random; 
the breaking unit is a particle which breaks its bond with its neighbors 
according to the Boltzmann factor (1/TR)e -'E/kBT, where n is the number 
of neighbors of the particle before breaking, kB is the Boltzmann constant, 
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and T is the temperature. By varying the attraction energy - E  between 
neighboring particles, the SAK model permits a whole spectrum of fractal 
dimensions ranging from 1.35 to 2.0 in 2D, while in the Kolb model there 
is a unique fractal dimension of D - 1.57 in 2D at dynamic equilibrium. It 
is worth noting that in the SAK model, there is also a dynamic equilibrium 
state where the cluster size no longer changes but the structure of clusters 
still changes with time, in contrast to the Kolb model, where the fractal 
dimension is fixed at D = 1.57 in 2D at dynamic equilibrium. The other 
important result of the SAK model is that at a fixed time, the fractal 
dimension remains around 1.35 at large values of E and increases rapidly 
with decreasing E at about E~-4kBT. The fractal dimension D ~  1.35 at 
large E is the result from the DLCA model in 2D and corresponds to the 
case E = ~ in the SAK model. 

The experimental investigation was carried out by L i u  etalJ jS) 
using gold particles coated with a surfactant. With the use of static light 
scattering, conventional transmission electron microscopy (TEM), and 
high-resolution transmission electron microscopy (HRTEM), colloidal 
aggregates of small gold particles of approximately 15 nm in diameter were 
examined in great detail. The finite interparticle attractions were achieved 
with an appropriate additive, i.e., a surfactant, via adsorption. With the 
surfactant, particles within an aggregate were well separated at a distance 
of about 1-2 nm, about twice the width of the adsorbed surfactant layer, 
and infinite interparticle attraction at contact was avoided. With the 
modified Derjaguin Landau-Verwey-Overbeek (DLVO) theory (see, e.g., 
ref. 16) to describe the interparticle interaction, it was shown that with the 
surfactant, the interparticle attraction energy becomes finite. Moreover, 
fractal aggregates can still be grown when the interparticle attraction is 
finite. The fractal dimension of the aggregates depends on the interparticle 
attraction energy: the minimum fractal dimension D that was obtained is 
about 1.74 for large interparticle attraction energies, with D increasing at 
smaller attraction energies. The experimental curve of D versus attraction 
energy resembles qualitatively that of the computer simulations of the SAK 
model, "4) although the simulations were done in 2D, indicating that the 
reversible aggregation process in a colloidal system is represented by the 
SAK model ~14) rather than the Kolb model. I11J 

2. C O M P U T E R  S I M U L A T I O N S  

2.1. Model  

The SAK model is a modification of the diffusion-limited-cluster- 
aggregation (DLCA) model. The computer simulations were done in a 2D 
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square lattice with periodic boundary conditions. The diffusion and the 
aggregation of particles and clusters in the SAK model are the same as in 
the DLCA model. The simulation starts with a given number of particles 
uniformly distributed on the lattice. Particles are performing Brownian 
motion (random walk). All particles and clusters move at random, one 
lattice constant in every time interval zl~. When two particles collide, they 
form a cluster. A cluster, just like a particle, then random walks as a unit 
and may collide with particles or clusters to form a larger cluster later. In 
the SAK model, the diffusion time constant for all clusters is assumed to 
be the same, since the cluster-size dependence of the diffusion time constant 
does not change the fractal dimension of the cluster. ~x'~7~ 

The major contribution of the SAK model is that it considers a finite 
nearest-neighbor interparticlc interaction - E  between particles, so that at 
finite temperatures, a particle within a cluster may break its bonds with its 
neighboring particles. At temperature 7', the rate for a particle to unbind 
from its neighbors is (1/~n)e ,,l:/k,,r where re is the time constant for 
unbinding, and n is the number of neighbors of the particle. For con- 
venience, in this section, we will choose the units such that the Boltzmann 
constant is unity. 

The unbinding time constant of a particle rR may be different from the 
diffusion time constant ~D. The time constant ~:~ is the inverse of the 
unbinding attempt frequency and would depend more on the surface 
properties of the particles. ~ is related to the diffusivity of the particles in 
the solution. A large ~:R/z~ may be interpreted as a higher particle mobility 
relative to relaxation and is analogous to the quenching rate in the glass 
transition. Approximately speaking, the Kolb model may be thought of as 
the case where rn/rt~ is very large. However, it should be noted that, as we 
have mentioned earlier, the SAK model differs from the Kolb model. In the 
Kolb model, the breaking unit is a bond which breaks at random, whereas 
in the SAK model the breaking unit is a particle which breaks its bonds 
with its neighbors according to the Boltzmann factor e ,,L:/r 

The bond-breaking process is simulated with the Monte Carlo method. 
In every zR, each particle is checked with a random number ranging 
from zero to unity. If the random number is larger than the Boltzmann 
factor e -"e/r, the particle breaks all bonds with its neighbors, After the 
particle breaks the bonds with its neighbors, it then goes to one of the 4 -  n 
unoccupied neighboring sites at random and the cluster is divided into 
segments. The resulting number of segments ranges from two to four, 
depending on the number of neighbors bonded to that particle and on the 
configuration of the cluster before the breakup. For example, the breaking 
away of a double-bonded particle in the neck portion of the cluster may 
result in as many as three segments, as illustrated in Fig. I. Each individua! 
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Fig. I. Illustration of the unbinding processes of particles I through 3 in cluster (a): 
Unbinding takes place according to the rate ( l / rR)e  ,L/J] where n is the number of neigh- 
boring particles, and is simulated with the Monte Carlo method. The possible resulting 
configuration and possible number of resulting clusters, which is below the configuration. 
are shown for each case. 

segment then becomes an independent cluster and may collide with others 
at a later time. 

The bond breaking allows clusters to restructure and densify. One may 
regard the restructuring and densification in the SAK model as thermal 
annealing of the aggregates, since the bond-breaking processes are 
controlled by the Boltzmann factor. The DLCA model corresponds to the 
case when E is infinite and may be regarded as the quenched state. 

In the simulations, only the translational motion of particles and 
clusters is considered explicitly and not the rotational motion. However, 
when there is sufficient sampling from the simulations to allow many 
configurations of two colliding clusters, rotational motion should not affect 
the fractal dimension of the clusters. 1~8) 

2.2. Results 

As examples, three different aggregation conditions with the same 
number densities but different values of E and ZR/ZD are shown in 
Figs. 2a-2c. Figure 2a shows the results when E =  1.5T and ZR/rD = 0.2, in 
which large aggregates cannot easily be formed. Figure 2b shows the case 

S22/62/5-6-6 
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Two different procedures were used to investigate the effect of a finite 
attraction energy. Procedure 1 studies the restructuring effect by starting 
with clusters of various sizes N grown using the DLCA algorithm at the 
same particle number density and then activating the bond-breaking 
process according to the chosen values of E and ZR/ZD. This procedure is 
analogous to annealing. Under conditions of constant T and E, however, 
this procedure also represents cases where zR/ro is large. Under such 
conditions, aggregation occurs much faster than relaxation and the resultant 
aggregates initially resemble those of the DLCA model. Procedure 2 
monitored the structural evolution of aggregates during growth. This was 
achieved by choosing smaller values of rR/ZD SO that sufficient unbinding 
took place along with cluster growth. It will be shown later that the results 
of the two procedures are quite similar. 

For each set of E and rR/rn, the number of particles within a cluster 
N is plotted on a log-log scale against R m in every 100zn, where R m is the 
maximum radius of a cluster and is defined as 

Rm=�89 max {Ir,-r/I} (l) 
l <~ i, .j <~ N 

( i #  /) 
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zx t : 5 0 0 r  o 
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Fig. 3. N vs. R,,, where N is the cluster size and R m is the maximum radius in units of the 
lattice constant as defined in the text. 
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In each plot of N versus Rm, I I 14 data points in the range 
30 ~< N ~< 200-300 are included; each point is the average over ten samples. 
The result is that the curves are linear throughout the simulation and the 
slope of the lines increases with time. An example done with procedure l 
is given in Fig. 3. Note that for a given N, the corresponding R,, decreases 
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Fig. 4. D vs. t for var ious  cases, where D is the fractat d imens ion  and t is time. 
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with time, indicating that the clusters are getting denser with time. 
Meanwhile, the plots of t = 500TD and t = 10,000rD remain linear while the 
slope increases with time: 1.35 at t = 0 ,  1.46 at t = 5 0 @  D, and 1.63 at 
t =  10,000zD. This indicates that the clusters remain fractal during the 
course of restructuring and that the fractal dimension increases with time. 
The fractal dimension is taken as the slope of the log N versus log Rm lines 
by least-square fit. The plot of t = 0, which represents clusters grown from 
the DLCA model, thus has a fractal dimension D =  1.35 +0.05, which 
agrees with the values obtained in refs. 8 and 9 within numerical error. 

In Fig. 4, D versus t is plotted for various values of E and rR/rD" In 
Fig. 4a a small value, rR/v o = 0.5, was chosen and procedure 2 was used. 
Because of the small values of VR/VD and E, sufficient unbinding takes place 
along with cluster growth. In this case, when monitoring was stopped at 
t = 1,000r~, the clusters were still growing. Thus, Fig. 4a can be regarded as 
the structural evolution of aggregates during growth and can be compared 
with Fig. 4b, which is obtained by using the same value for E, but a dif- 
ferent value for z~/~o and procedure 1. The fluctuation of data points in 
both Figs. 4a and 4b is probably an artifact due to insufficient sampling. In 
spite of the different procedures used, the two curves look similar. The only 
difference is in the time scale. Thus, varying rR/r~ only changes the time 
scale, but not the behavior of D versus t. With increasing E, the change in 
D becomes slower, as is shown in Figs. 4c 4e, obtained by procedure 1. 
Note that Figs. 4d and 4e both have the same value for D, 1.35 at t = 0, 
because the same initial clusters were used for comparison. In Figs. 4d and 
4e, D quickly increases from the DLCA value and then saturates at some 
value D', while D' decreases with increasing E: D ' =  1.5 for E = 2 . 5 K  
D ' =  1.42 for E=3T. This indicates that under suitable conditions 
aggregates can have a fractal dimension D tha! is substantially larger than 
Ihe I)L('A value; I) remains unchanged over a hmg period of time, which 
has been observed experimentally. 4'j5 

In Fig. 5, D versus E is plotted for rR/r~ = 5 at t = 5,000% and at 
t = 10,000~ to show the different restructuring rates at different E. It is 
clearly shown that the change in D with time is accelerated when E is 
decreased from 4T. Also note that for a given t, D remains close to the 
DLCA value at large E, but drastically increases from that value at around 
E<~4T. 

As we have shown in Fig. 4, the fractal dimension D changes with time 
and D may saturate for a long period of time, During the growth of 
clusters, the cluster size can also saturate. In general, the cluster size may 
saturate at a different time from the fractal dimension. In Fig. 6, to show 
the saturation of cluster size with time, we plotted the number of particles 
in the larges! clusler Nm as a function of time for two cases, E =  1.67T(O ) 
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Fig. 6. The number of particles in the largest cluster Nm plotted as a function of time for two 
cases, ( � 9  E = 1.67T and ( � 9  E = 1.33T. For both cases, p = 0.11 and ~R/TO = 2, where p is 
the average particle number density. 



Aggregation of Colloidal Particles 971 

and E =  1.33T(�9 For both cases, p =0.11 and ZR/ZD=2, where ,o is the 
average particle number density. As one can see, in these two cases, Arm 
saturates very quickly. The saturation of N,, signals a pseudo-steady state 
in which the average number of particles within a cluster no longer 
changes, but the structure of the cluster is still changing. This pseudo- 
steady state corresponds to the dynamic equilibrium state in the Kolb 
model. The saturated N,, is a function of E, as shown in Fig. 7 for three 
different cases. The fact that the logarithm of the saturated Nm is linear 
with E for all cases indicates that the cluster size increases exponentially 
with E. The cluster size also increases with increasing ~R/'rD and particle 
concentration. 

The behavior of the cluster size as a function of E can be understood 
qualitatively following the argument by Kolb. t~1) Here we reproduce Kolb's 
argument with a modification on the breaking process. Let us suppose that 
the diffusion velocity v of a cluster of mass m is v = m ~ and, for simplicity, 
we also assume that the clusters have a uniform size. The time it takes for 
two clusters to pair up is then 

1 r n  I ~ (a 2)/0 t , "  ~ / ) -  (2) 
P 

2 0 0  - I I 

/ 

I 

o I 2 
E / T  

Fig. 7. N,, vs. E/T, where N,, denotes the number of particles in the largest cluster at (O) 
p =0.051, Tn/zz) = 5; (,&) p =0.125, "rtc/rt~ = 2; and ([ l) p=0.11, "rR/ro= 2; where p denotes 
the number density. 
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where ~h = N o / N  is the average mass per cluster, N is the total number of 
clusters, No is the total number of particles, and p = N o / V  is the average 
particle number density with V the volume of the system. The bond-break- 
ing time tt for a particle within a cluster of mass m is tt.~ ( r e /m)e  ''~:/r, 
where ~ is the averaged number of neighbors of a particle within a cluster. 
The pseudo-steady state corresponds to t,, = t l ,  which leads to 

( p Z R ~ ' / r 2  ~ '" 2)/"1 
rh~  e,,/:'/r(2 , ~a 2>/mrl (3) 

\ rt~ / 

In the present study, ~ = 0 and d =  2; thereby 

th ~ ( P'r "~ '/2 e ''/2"r (4) 
\ r/~ I 

The largest cluster size N,,, can bc related to the average cluster size m by 
assuming an appropriate cluster size distribution function J'fm). A com- 
monly used cluster size distribution is f (m) = A M  ~ exp( -m/N, , ) ,  where A 
is some constant and we use N,,, as the cutoff in the exponential tail. From 
the definition of Ji). 

jQt 
th = .[ ( m ) rn dm ( 5 j ) 

we obtain th=N2m T ( 2 - r ) ,  where 1 " ( 2 - r ) i s  the gamma function with 
an argument 2 -  r, which is independent of N,,. Therefore, we can expect 

N m _ (  Pr R~ `/2 e,-~E/[ 2,2 , ) r l  (6) 
\ r , /  

Preliminary results showed r ~ 1.5-2, depending on the value of zR/z o. The 
details of the kinetic studies will be published in a subsequent paper. 
However, the above argument provides a qualitative explanation for the 
exponential dependence of Nm on E. 

3. GOLD PARTICLES WITH S U R F A C T A N T  

3.1. Experiments 

Colloidal gold particles were produced by reacting gold chloride with 
sodium citrate in an aqueous environment at I00~ (t9~ The weight concen- 
tration of gold was about 0.0025 % and that of sodium citrate was about 
0.05%. The particles produced are roughly spherical, with a diameter of 
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about 15 nm. Aggregation of particles is induced by adding pyridine as 
in refs. 2, 4, and 5 or by adding different amounts of a surfactant at room 
temperature. The advantage, which will later become clear, of using a 
surfactant is that it keeps particles well separated. 

Static light-scattering experiments were performed to obtain quan- 
titative structural information, such as the fractal dimension D of the 
aggregates. The instrument, manufactured by Brookhaven Instrument Cor- 
poration, has a 50-mW helium-neon laser with wavelength 2 = 632.8 nm. 
For fractal aggregates, the scattering intensity of a given wave number q is 
related to the fractal dimension D in the form 

I ( q ) ~ q  ~ (7) 

over the range Rcl ~ < q < a ~, where a is the radius of the particles and Rr 
is the average radius of gyration of the aggregates, t2~ Thus, the fractal 
dimension D of aggregates can be obtained by plotting l(q) versus q on 
double-logarithmic paper, where q is related to the scattering angle 0 by 
q = (4nn/2)sin(0/2) ,  and n is the refractive index of the fluid. The negative 
of the slope of the double-logarithmic plot of l(q) versus q in the power-law 
region gives the fractal dimension D of the aggregates. 

Transmission electron microscopy (TEM) studies were carried out with 
a Philips EM 300 operated at 100 keV and were mainly used for direct 
visualization of the aggregates. In some cases, when the aggregates are 
more ramified (for example, when the fractal dimension D is smaller than 
2.0) and particles do not overlap severely, the fractal dimension D of the 
aggregates can also be obtained by box countingJ 2~ The fractal dimension 
obtained from the TEM micrographs can be compared with that obtained 
from static light-scattering experiments. TEM samples were made by 
transferring a small amount of solution onto a carbon film suspended on 
a TEM copper grid. 

In addition to static light-scattering experiments and conventional 
TEM studies, high-resolution transmission electron microscopy (HRTEM) 
studies were also carried out with a Philips 430T operated at 300 keV, 
which allowed the interparticle regions to be observed at the atomic length 
scale. The HRTEM studies permit the gain of direct knowledge about 
interparticle bonding, which is difficult to obtain otherwise. 

3.2. Resul ts  

Various amounts of a cationic surfactant (Adgon 462, quaternary 
ammonium salt) are added to the initially dispi~rsed suspension of gold par- 
ticles of 15 nm diameter at room temperature to induce aggregation. This 
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surfactant is chosen because (i) it is soluble in water in a wide range of pH 
and (ii) it is positively charged, so that when it is adsorbed on the gold 
particle surface, it will neutralize the charges on the gold particles to induce 
aggregation. The initial negative charges on the particle surface are the 
result of adsorption of negatively-charged citrate during the growth process 
of gold particles. (21'22) 

Figures 8a-Sf are the TEM micrographs of gold particles with various 
surfactant concentrations c: (a) c = 0 ,  (b) c=1 .87 •  10-Swt %, (c) 
4 .67x10 -Swt  %, (d) 9 .33x10 5wt %, (e) 3.73x10 -4wt  %, and (f) 
5.61 x 10 - 4  Wt %. One can see that with an increasing amount of surfac- 
tant, gold particles change from well dispersed, as in Fig. 8a, to aggregated, 
and the structure of the gold aggregates changes from dense to ramified as 
shown in Figs. 8a-8d, and back to dense again, as in Figs. 8e and 8f. The 
static light-scattering intensity of the aggregated samples corresponding to 
Figs. 8b-8e is shown in Fig. 9, where the double-logarithmic plots of l(q) 

Fig. 8. TEM micrographs of gold particles at various surfactant concentrations c: (a) c = 0, 
(b) c= 1.87x 10 -5 wt %, (c) 4.67x 10 -5 wt %, (d) 9.33 • 10 -5 wt %, (e) 3.73 • 10 -4wt %, 
and (f) 5.61 x 10 -4 wt %. 
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Fig. 9. Static light scattering intensity of the aggregated samples corresponding to (A) 
Fig. 8b, D = 2.68; ( l ) Fig. 8c, D = 1.91; (O) Fig. 8d, D = 1.74 ; (O) Fig. 8e, D = 2.03; where 
D is the fractal dimension of the aggregates. 

versus q clearly show a power-law behavior. The deduced values of the 
fractal dimension D, which are the negative of the slopes in Fig. 9, are as 
follows: D = 2.68 for (b), D = 1.91 for (c), D = 1.74 for (d), and D = 2.03 for 
(e). More detailed analysis of the data using the method proposed by Lin 
etal. ~23~ may yield additional information about the average radius of 
gyration. Here we are interested in the fractal dimension only. Both static 
light-scattering experiments and TEM micrographs indicate that the 
aggregates at c~>5.61 x 10-4wt  % become compact objects. It is worth 
mentioning that for D ~< 2.0, the values of the fractal dimension obtained 
from static light scattering are identical to those obtained from box counting 
on TEM micrographs. For D > 2.0, particle overlapping prohibits accurate 
evaluation of D from TEM micrographs. The resultant fractal dimension D 
as a function of the added surfactant concentration c is shown in Fig. 10. 
The value of D decreases as the surfactant concentration c is increased and 
reaches the minimum value 1.74 at c = 9.33 x 10- 5 wt %, above which the 
value of D increases again. 

The role of the surfactant is to change the interparticle interaction via 
adsorption. The adsorption of the surfactant on the gold particle surface is 
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evident by the onset of the aggregation of the gold particles in our experi- 
ment. This point will become clear later when the interparticle interaction 
is shown quantitatively. More detailed adsorption studies of similar surfac- 
tants have been done on colloidal silver surfacesJ 24'25~ The adsorption 
behavior of the surfactant used in this experiment on gold particle surfaces 
should be similar to that described in refs. 24 and 25 because of the 
colloidal similarity. Initially, the adsorbed surfactant ions on the gold par- 
ticle surface help reduce the surface charge of the particles and, hence, 
increase the net interparticle attraction. This is due to the initial opposite 
charge of the surfactant ions and the gold surface. When the surface charge 
on the gold particles is completely neutralized, the net interparticle attrac- 
tion reaches a maximum; further adsorption of the surfactant only 
increases the surface charge of the gold particles, which now have an 
opposite sign, and thus reduces the net interparticle attraction. The obser- 
ved minimum fractal dimension at c = 9.33 x 10 s wt % corresponds to the 
maximum in the interparticle attraction. The minimum D value of 1.74 
obtained at c = 9.33 x 10 -5 wt % is quite reasonable, for it agrees with both 
the computer simulations of the irreversible diffusion-limited-cluster- 
aggregation (DLCA) model corresponding to the case of an infinite inter- 
particle attraction and the previous aggregation studies of gold particles 
with pyridine addition in the fast aggregation regimeJ 2'4~ 

The difference in using a surfactant instead of pyridine to modify the 
interparticle interactions is revealed in the HRTEM micrographs in 
Figs. l l a  and l ib ,  where gold aggregates with the surfactant and with 
pyridine are shown, respectively. With the surfactant, the gold particles 
remain well separated at a distance of about 1-2 nm, which is about twice 
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the width of the adsorbed Surfactant layer, (26'27) as evidenced by the clear 
gaps between gold particles in Fig. l la.  In contrast, with the addition of 
pyridine, necks form between adjacent gold particles as shown in Fig. 1 lb. 
This may explain why in the previous aggregation studies of gold particles 
with pyridine, change in the structure of aggregates has seldom been observed 
and only certain values of the fractal dimension have been obtained, i.e., 
1.75 for fast aggregation and 2.0 for slow aggregation. From Fig. l lb ,  one 
can see that it is very difficult to break the necks once they form. 
Consequently, with pyridine, rearrangement of particles within a cluster is 
almost impossible. 

Fig. 11. HRTEM micrographs of gold aggregates (a) with the surfactant and (b) with 
pyridine. Gold particles are well separated at a distance of 1-2 nm with the surfactant, while 
necks form between particles with pyridine. 
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Fig. 11. (Continued) 

The use of the surfactant allows the gold particles to remain well 
separated even at the closest distance, i.e., twice the length of the adsorbed 
surfactant layer. It is therefore possible to talk about the interaction 
between gold particles in the case of surfactant addition. Since the 
experiments are done in very dilute suspensions and the particles remain 
separated even at the closest approach of about 1-2 nm, it is adequate to 
describe the interparticte interaction with a modified DLVO theory. Under 
the electrostatic condition, the interaction between gold particles V(s) has 
two terms: 

V(s) = Vc(s)+ Va(s) (8) 

where Vc(s) is the screened Coulomb interaction, with the Debye-Hiickel 
approximation, which is justified under the present experimental conditions 
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where both the particle and electrolyte concentrations are low, V~(s) is the 
van der Waals attraction, and s is the surface-to-surface interparticle 
distance. In CGS units, V,.(s) takes the form Iz31 

Z~e2[ e ~~ ]~ 
VAs)= Li--$-q-aq J e--qr (9) 

where a is the radius of a particle, r = s + 2a is the separation between the 
centers of particles, Z is the surface charge of a particle, e is the static 
dielectric constant of water, e is the electronic charge, and q is the inverse 
screening length, which satisfies 

q2 =_~kB4~ezT ~i. nlz2i (10) 

where k s is the Boltzmann constant, T is the absolute temperature, and zi 
and ni are the charge and the number density of the ith species of ions, 
respectively. The term in brackets in Eq. (9) is the size correction, which 
takes into account the fact that part of the volume of the suspension is not 
available for screening due to the finite size of the colloidal particles: 

The van der Waais attraction takes the following form in CGS 
units: "6) 

A [  2a 2 2a 2 // s 2+4as  .'~1 
v.(sl  = -~ L,,,2-~a s + s ~ + 4as + 4a 2 + In \s2 + 4as + 4a2JJ (1 1) 

where A is the Hamaker constant. 
To calculate the interparticle interaction, a Hamaker constant of 

2.2 x 10 Jz erg is used, which is typical of metals. 128~ For the screening 
length q ~, the contributions from all ions in the solution are included; the 
pH is about 5. The number concentrations of C1 , Na+, and citrate are 
about 1.56x 10U'cm 3 1.74x 10~Scm s and 0.58x 10~Scm -3, respec- 
tively. The surfactant concentration is on the order of 10 -5 wt %. The 
dominant contribution is from Na + ions. Using Eq. (9), a value of about 
7 nm is obtained for the screening length 1= q t. For the effective surface 
charge Z of a particle, the electrical mobility of the particle p has been 
measured to be 4.83• I0 4cm2/Vsec in the absence of the surfactant. 
From the electrical mobility measurement, the ~ potential of the particles 
is deduced to be about 100 mV. By approximating the ff potential Vr in the 
CGS units to be 

Z e  2 
. . . . . . . .  ( 1 2 )  

ga  
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the charge Z of each particle is estimated to be about 42 times the electron 
charge in the absence of surfactant ions. It should be noted that this effec- 
tive charge Z may differ from the real surface charge. However, it is the 
effective charge Z that determines the electrostatic repulsion between par- 
ticles. The surface charge Z is taken to be 0 at the surfactant concentration 
c = 9.33 • 10 5 wt % where the fractal dimension D = 1.74 is the minimum. 
When complete adsorption of surfactant molecules is assumed, the surface 
charge of particles at a given surfactant concentration c can then be 
linearly interpolated in the range 0 < c < 9 . 3 3  • I0 5 wt %. By complete 
adsorption, we mean that all the added surfactant ions are on the gold 
particle surfaces. For example, the interpolated values of the effective 
surface charge Z are 34 for c = 1 . 8 7 x  1 0 - S w t %  (Fig. 8b), and Z = 2 1  
for c = 4 . 6 7 •  (Fig. 8c), respectively. The value of Z for 
c > 9 . 3 3 •  10 -~wt % was not extrapolated. The asymmetry of D versus c 
near the minimum in Fig. II indicates that the assumption of completc 
adsorption of surfactant is no longer valid for c > 9.33 • 10 5 wt %. 

Using the estimated values of Z, q, A, etc., the interpardcle interaction 
V(s) was then calculated for the surfactant concentration range 
0 < c < 9.33 • 10 5 wt %. The result is shown in Fig. 12. The closest separa.- 
tion between two particles, which is about twice the length of an absorbed 
surfactant molecule (I.5 nm), is indicated by the dashed line at s = 1.5 nm, 
which is a reasonable value when the structure and the configuration of the 

61 

4 

~ 0  

> - 2  

- d  

-( 

-8 

0 

Y 
2 4 6 8 i0 12 14 

S (nm) 

Fig. 12. V(s) vs. s for various values of the effective surface charge Z of gold particles~ where 
V(s) is the interparticle interaction energy in units of k B T and s is surface-to-surface interpar- 
ticle distance. The dashed line at s = 1.5 nm indicates the closest interparticle separation due 
to surfactant adsorption. The different values of Z are the result of different adsorption 
amounts  of surfactant ions on the gold particle surface. 
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absorbed surfactant are considered]  25'26~ It was approximated that the con- 
tribution of  the steric repulsion between two adsorbed surfactant layers to 
the interparticle interaction is a hard-wall repulsion at the average separa- 
tion s = 1.5 nm. As the surfactant concentrat ion c is increased, one can see 
that the interaction at s = 1.5 nm changes from repulsive to attractive at 
about  c =  1.87x 1 0 - S w t  %, which agrees very well with the onset of  
aggregation in the experiment. As the surfactant concentrat ion c is further 
increased, the net at t ract ion at s = 1.5 nm becomes larger, which is consis- 
tent with the decrease in the fractal dimension shown in Fig. 10. 

As mentioned above, the onset of  aggregation of  the gold particles 
serves as evidence of the adsorpt ion of the surfactant on the particle 
surface. The reason is as follows. If the surfactant ions do not adsorb  on 
the gold particle surface, but  remain in the suspension, given the low sur- 
factant concentrat ions that are used, mere screening by the free surfactant 
ions in the suspension would not reduce the Cou lomb  repulsion between 
gold particles enough to induce aggregation. 

The value of [V(s)l at s =  1.5 nm is the maximum attraction energy 
that two particles can experience, since they cannot  get any closer. In 
Fig. 13, the fractal dimension D is plotted as a function of the absolute 
value of the net at traction at s = 1.5 nm, [ VLs,,m[, for the aggregated cases 
in the range 0 <  c < 9.33 • 10 5 wt %. First, one sees that with the addit ion 
of the surfactant, the interparticle at traction energy now remains finite. 
Second, with finite interparticle at traction energies, the gold particles still 
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Fig. 13. D vs. IV= 5,,,,I for the aggregated samples ((3), where D is the fractal dimension and 
r VLs,,,,[ is the net interparticle attraction energy at s = 1.5 nm. Also plotted (dashed line) is D 
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form fractal aggregates. The fractal dimension remains around 1.74 at large 
values of I V~.5,ml and increases as I Vt.5,r,I decreases. Also plotted in Fig. t 3 
is the curve for D versus E of the computer simulations of the SAK model 
shown in Fig. 8 at t =  10,000T~. Note the similarity of the two curves, 
although the simulations were done in 2D: the values of the fractal dimen- 
sion D in both curves remain constant for large values of the attraction 
energy and increase when the attraction energy is about 4T, where T is 
the absolute room temperature in the experimental case. The Boltzmann 
constant is taken to be unity here. The close resemblance between the two 
curves and the saturation of D at E ~ 4 T  suggest that the reversible 
aggregation process in a colloidal system is represented by the SAK model. 
While effects of the structural change have been studied by other investi- 
gators, none of these studies can explain the observed continuous change of 
the fractal dimension with interparticle interactions. For example, random 
bond breaking only increases the fractal dimension from 1,75 to 2.03 in 
3D. ~1 The RLCA model gives a fractal dimension D - 2 . 0  in 3D. I~'~ The 
rotational adjustment of one cluster around the center of another cluster at 
collision to allow a second bond to form only increases the fractal dimen- 
sion slightly in 2D ~291 and by about 0.3 in 3D. ~3~ 

The choice of the attraction energy at s = 1.5 nm may appear some- 
what arbitrary, since the interparticle separation in the HRTEM 
micrographs ranges from 1-2 nm. However, the conclusion drawn from 
Fig. 13 would not be altered if the interaction energy at a different value of 
s is chosen. For instance, the interaction at s = 1 nm or 2 nm could have 
been used instead, which would only change the specific values of the inter- 
action energy, but not the qualitative behavior of the fractal dimension 
versus the interaction energy. 

4. S U M M A R Y  

Aggregation of colloidal particles with a finite interparticte attraction 
energy has been investigated with computer simulations and with colloidal 
gold particles. The computer simulations were done with the SAK model, 
which incorporates a finite nearest-neighbor attraction energy - E  into the 
DLCA model. Experiments were done with gold particles coated with a 
surfactant. The adsorbed surfactant layer modified the interparticle interac- 
tion in two ways: (1) the adsorbed layer kept two particles separated, 
preventing the infinite attraction at contact; and (2) the charge of the 
adsorbed surfactant modified the interparticle interaction at finite distances. 
The interparticle interaction can be well described by the modified DLVO 
theory. Both the computer simulations of the SAK model and the 
experiments showed that (i) with a finite interparticle attraction energy, 
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aggregates can remain fractal, and (ii) the fractal dimension remains that 
of the D L C A  model at large at tract ion energies and increases rapidly at 
small a t t ract ion energies. The agreement between the computer  simulations 
of  the SAK model and the experimental results of gold aggregates suggests 
that the reversible aggregation process in a colloidal system can be 
represented by the SAK model. 

In the computer  simulations, the ffactal dimension can also change 
with time: D may change with time continuously or saturate at some value 
for a long period of time, depending on the interparticle at traction energy 
and the ratio of  two time constants,  i.e., the diffusional time constant  rD 
and the relaxational time constant  for bond breaking r R. In the experimen- 
tal study, the change of  D with time was not observed. It could be that the 
present system represents the case where ZR/~D is large and the fractal 
dimension D is saturated at some value for a long time. However,  in a 
separate study of the growth of  colloidal gold particles, Liu et  aL did 
observe the change of  D with time. t3~J 
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